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The variation-perturbation technique is applied to the calculation of the electric polarizability 
tensor of diatomic molecules within the CNDO/2 approximation. The results obtained in this paper 
are similar to those found in the non-empirical variation-perturbation approach within the minimal 
STO basis set. They are also compared with other CNDO/2 calculations and with existing experimental 
data. It follows from this comparison that the CNDO/2 variation-perturbation method does not allow 
for the calculation of the polarizability anisotropies. On the other hand, the rotational average of the 
polarizability tensor can be predicted in agreement with both the experimental data and non- 
empirical results. 

Das Variations-St~Srungsverfahren wird im Rahmen der CNDO/2-N~iherung zur Berechnung von 
elektrischen Polarisierungstensoren zweiatomiger Molekiile herangezogen. Die Resultate iihneln denen 
des analogen, aber auf ab initio-Rechnungen basierenden Verfahrens mit einem minimalen Satz von 
Slaterfunktionen. Es ergibt sich, dab die Berechnung der Anisotropien nicht m6glich ist, wohl aber 
die der r~iumlichen Mittelwerte. 

Introduction 

Several attempts have been made to develop a reliable method for the evalua- 
tion of the electric polarizability tensor within the framework of semiempirical 
all-valence-electron theories. The perturbed Hartree-Fock theory [1, 2] simplified 
according to the CNDO/2 approximations of Pople et al. [3, 4] has been studied 
by Davies [5]. However, Davies concluded that the restriction imposed on the 
orbital basis set in the CNDO method does not allow for an adequate represen- 
tation of the perturbed molecular orbitals. The components of the electric 
polarizability tensor calculated by Davies [5] were much too low. 

A finite perturbation method for the solution of the unrestricted open-shell 
CNDO/2 equations in the presence of an external electric field has been adopted 
by Hush and Williams [6]. These authors have performed calculations of the 
electric polarizability for various linear molecules. According to their results, the 
average polarizabilities are considerably underpredicted whereas the calculated 
polarizability anisotropies are in substantial agreement with existing experimental 
data. These latter were even better predicted by the CNDO method than by the 
non-empirical calculations. More recently Hush and Williams [7] improved their 
results for the average polarizabilities by using a semiempirical correction scheme. 
In this way they obtained remarkably good results for both the average polariza- 
bilities and the polarizability anisotropies. 
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Despite of these very encouraging results the finite perturbation SCF CNDO 
method utilized by Hush and Williams becomes rather laborious when applied to 
larger molecules. The time-consuming self-consistency process must be repeated 
for various strengths of the external electric field. Moreover, the procedure of 
fitting the induced dipole moment to the polynomial in the electric field strength 
is also open to some objections. It depends on both the polynomial order and the 
number of points chosen for the interpolation [8]. For these reasons the methods 
leading directly to the first-order perturbed wave functions and polarizability 
components seem to be more convenient. 

In Part I of this series [9] we studied the application of the variation-perturba- 
tion technique of Karplus and Kolker [10, 11] to the calculation of the magnetic 
susceptibility in the CNDO/2 approximation. It was shown that this semiempirical 
version of the variation-perturbation procedure leads to nearly the same values 
of the magnetic susceptibility as those obtained in the non-empirical treatment 
of Karplus and Kolker. Also the agreement with experimental data was remark- 
ably good. It seems therefore, that the same method should also provide for 
a reasonable evaluation of the electric polarizability tensor. As will be shown in 
the next Section, the variation-perturbation technique requires no more than the 
computation of few simple integrals and can be very easily rewritten within the 
framework of the CNDO approximation. In comparison with techniques used by 
Davies and by Hush and Williams it does not involve any iterative procedure and 
needs only a knowledge of the ground state electronic wave function of a given 
molecule. 

Computational Methods 

According to the approximate variation-perturbation scheme developed by 
Karplus and Kolker [10, 11] the perturbed orbital ~v~ is expressed in the product 
form 

~p~ =f~v ~ (1) 

where ~po denotes the unperturbed orbital and the one-electron function f~ is 
determined by using the variation principle for the second-order energy E 2. In 
the Hartree-Fock approximation with neglected self-consistency corrections and 
with omitted non-local contributions to the Hartree-Fock potent!al the final 
formula for E 2 becomes 

E2=2 (~v~176176162 ~ 
(2) 

_ ~ { ( g _ e  o) (~volf, wo) + 2(wy[h, lwo}} (f:pO[,po) ] 
j#:i 

where h' represents the one-electron perturbation operator and 
1 0 e, = (W, I h'l~PP) (3) 

e~ is the energy of the unperturbed orbital ~v ~ the summations in Eq. (2) are 
performed over all doubly occupied orbitals (n). 
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In the case of the electric polarizability calculations the perturbation operator 
for the i-th electron has the following form 

h'(i) = - 6~r~ (4) 

g~ is the e component of the external electric field, and 
r~ = r ( i ) -  R ~ (5) 

is the electron coordinate operator referred to the arbitrary chosen origin R ~ 
The summation over repeated Greek subscripts is implied. 

Writing the function f~ as 

f~ = - g~R~i (6) 

where R~, are the components of the variational vector function, we obtain the 
following expression for the electric polarizability tensor 

n 1 0 * 
o ~ . ~ = - 4 ~ [ ~ < l P i l V R . i V R . , I I P  ~ 

+2(112 ? r ~ -- <r~176 - ~ {(q-e? ) (wO[R. ,~  ~ (7) 

~ <w~176 + L r .  

related to the second order energy (2) by 

E 2 = - �89 (s )  

In Eq. (7) an abbreviated notation of matrix elements of the electron coordinate 

o _ o]~oo ) (9) <ru>ii -- <tp~ 

has been adopted. 
A convenient way for the variational determination of the R,~ functions is to 

choose them in a specified analytical form with a number of variational parameters 
to be determined. Kolker and Karplus [11] have used for R,~ the polynomial 
expansions of appropriate symmetry. This procedure results in a set of inhomo- 
geneous linear equations for the determination of variational coefficients. It also 
follows from the study of Kolker and Karplus [113 that the convergence of the 
finite polynomial expansion of R,i is quite good, especially for the perpendicular 
component of the polarizability tensor in diatomic molecules. For the parallel 
component of the polarizability tensor the convergence was not quite as good. 
Moreover, the calculated parallel components are as a rule much greater than the 
experimental ones. This indicates that the second order energy obtained by the 
variation-perturbation treatment of Kolker and Karplus is not an upper bound 
to the true second-order energy [12, 13]. Apparently, this deficiency of the Kolker 
and Karplus method is very important in the accurate non-empirical treatment. 
However, in the case of a simplified semiempirical treatment this shortcoming 
can partly be reduced. 

It is the purpose of this paper to study the applicability of the CNDO/2 version 
of the variation-perturbation technique to the calculation of the electric polariza- 
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bility tensor of diatomic molecules. Assuming the convergence of the variation- 
perturbation scheme we confined our calculations to very simple one- and two- 
term forms of the polynomial expansion. Taking the origin R ~ of the coordinate 
system lying on the internuclear axis (x axis) we have chosen the following form 

Ry i = aiy ~ q- bix~ y ~ (10) 

for the variational correction in the direction perpendicular to the internuclear 
axis. The variational correction in the parallel direction was taken in the form 

Rxi = ai + bi x~ (11) 

with constant a i determined by the orthogonality condition 

(~p~ [ g~i Iv2 ~ = 0. 

All the coordinates appearing in Eqs. (10) and (11) are measured from the 
origin R ~ 

The only integrals which appear after the substitution of Eqs. (10) and (11) 
into Eq. (7) are of the form 

( W~ l (x~176176 ~; ~ ) (12) 

where ~po are just the C N D O / 2  molecular orbitals or ls Slater atomic orbitals of 
core electrons 1. Expansion into AO's leads to the following expression 

(q'~176176 (z~ I ~P~ ) (12 a) 
= 2 Z Z 2 r (OtAl(XO)k(yO)t(gO)mlflB) 

A B O~A fib 

where ci,~A is the LCAO coefficient at atomic orbital ~g of atom A. The integrals 
over atomic orbitals were further simplified by using the zero differential overlap 
approximation for all the two-centre distributions, i.e. 

<C~a i(xO)k (yO)t (zO),~ [ fiB> _-- <~A ](x~ k (yO)t (zO)mlfla> tAB. (13) 

Then, the remaining integrals were calculated with Slater AO's. Moreover, the 
orthogonality of valence shell orbitals to these describing ls core electrons has 
been assumed. It seems that the non-orthogonality of ls and 2s Slater orbitals 
should in this case have a little effect on the calculated property. 

Obviously, a very short expansion of the variational corrections limits to some 
extent the scope of the present investigation. In principle, one can use richer 
polynomial expansions, but then a question arises whether the partial zero dif- 
ferential approximation can be used for higher powers k, 1 and m in Eq. (13). Its 
practical utility has only been tested on the first [3, 4] and second [9] moments 
of the electron distribution. 

Finally, it should be pointed out that the molecular orbitals ~po used in this 
paper are those obtained within the original version of the CNDO/2  method. 
The numerical calculations were programed in Algol for GIER computer and 
have been performed in the Computational  Centre of Warsaw University. 

1 The ls core electrons of atoms other than hydrogen were also taken into account, but the mo- 
lecular orbitals they occupy were assumed to be equal to the corresponding ls  Slater atomic orbitals. 
The energies e~ were taken from atomic SCF calculations of Clementi [14]. The same procedure has 
been used previously in the CNDO variation-perturbation treatment of diamagnetic susceptibilities [9]. 
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Results and Discussion 

First of all we shall compare our results with those obtained by Kolker and 
Karplus [11] in the non-empirical variation-perturbation treatment. The cor- 
responding values for the parallel and perpendicular component of the electric 
polarizability tensor are given in Tables 1 and 2, respectively. In Table 3 a similar 
comparison is made for the rotational average of the electric polarizability tensor 

~Av = �89 (~xx + ~ry + ~zz). 
In these Tables the results of the variation-perturbation treatment by O'Hare 
and Hurst [15] are also included. In these latter calculations a richer form of the 
variational correction has been used and also different basis sets were studied. 
The first column of the O'Hare and Hurst results referst to the BLMO basis set 

Table 1. Comparison of the CNDO/2 and non-empirical results of the variation-perturbation calculations 
for the parallel component of the electric polarizability tensor (all values in 10-24 cm a) 

Molecule a This work Kolker and Karplus [11] O'Hare and Hurst [15] 
1-term 2-terms b 1-term c 2-terms ~ 5-terms d 

H*H 1.664 - -  1.254 1.293 
H*Li 3.884 4.00 3.25 3.76 3.720 [16] 3.350 [-17] 
HLi* 3.884 - -  3.25 3.42 
HF* 0.830 1.168 0.742 0.791 0.907 [16] 1.212 [18] 
N*N 5.746 4.68 4.58 4.67 4.703 [16] 4.212 [20] 
F*F 1.904 - -  - -  - -  2.135 [16] 2.245 [22] 
C*O 4.803 - -  4.03 4.23 4.651 [16] 3.300 [20] 
B*F 3.124 - -  - -  - -  4.281 [16] 2.705 [20] 
LiF* 3.594 - -  5.38 11.18 

1.002 [191 
4.043 [211 

3.221 [23] 
2.716 [23] 

" The origin of the coordinate system is taken at the starred nucleus. O'Hare and Hurst [15] used 
the polynomial expansion centered on both nuclei. 

b Results obtained with the SAMO wave functions of Ransil [16]. 
c Results obtained with the BLMO wave functions of Ransil [16]. 
d The reference indicates the source of the wave function used in the calculation. 

Table 2. Comparison of the CNDO/2 and non-empirical variation-perturbation results for the perpen- 
dicular component of the electric polarizability tensor (all values in 10-2,* cm a) 

Molecule" This work Kolker and Karplus [11] O'Hare and Hurst [15] 
1-term 2-terms 4-terms b 1-term ~ 2-terms c 4-terms ~ 6-terms a 

H*H 0.572 0,572 - -  0.716 0.716 0.801 
H*Li 5.571 5,661 6.68 4.05 4.20 5.01 
HLi* 5.571 5.661 - -  4.05 4.20 5.00 
HF* 0.343 0.377 0.608 0.314 0.331 0.364 
N*N 1.098 1.098 1.30 1.18 1.18 1.27 
F*F 0.390 0.390 . . . .  
C*O 1.174 1.283 - -  1.35 1.46 1.55 
B*F 2.110 2.266 - -  - -  - -  - -  
LiF* 1.698 4.152 - -  3.40 6.24 10.53 

For Footnotes see Table 1. 

12 Theoret. chim. Acta (Berl.) Vol. 21 

5.002 [16] 5.080 [17] 

0.364 [16] 0.908 [18] 0.791 [19] 
1.251 [16] 1.919 [20] 1.951 [21] 
0.432 [16] 0.950 [22] 
1.562 [16] 2.307 [20] 2.086 [23] 
2.553 [16] 3.847 [20] 3.738 [23] 
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Table 3. Comparison of the C N D O / 2  and non-empirical variation-perturbation results for the rotational 
averaoe of the electric polarizability tensor (all values in 10 -24 cm 3) 

Molecule a This Work Kolker  and Karplus  [11] O 'Hare  and Hurst  [15] 
2/1-terms b 4/2-terms b,c 2/1-terms b,a 4/2-termsb, a 6/5-terms e 

H*H 0.936 - -  0.890 0.965 
H*Li 5.069 5.79 3.88 4.59 4.575 [16] 4.503 [17] 
HF*  0.528 0.795 0.468 0.506 0.546 [16] 1.009 [18] 0.861 [19] 
N * N  2.648 2,43 2.28 2.40 2.403 [16] 2.684 [20] 2.651 [21] 
F*F 0.895 - -  - -  - -  1.000 [16] 1.382 [22] 
C*O 2.283 - -  2.32 2.44 2.592 [16] 2.639 [20] 2.466 [23] 
B*F 2.552 - -  - -  - -  3.128 [16] 3.476 [20] 3.398 [23] 
LiF* 3.966 - -  5.95 10.75 

a See Footnote  a of Table 1. 
b The symbol n/m indicates the number  of terms in Rul for the perpendicular (n) and parallel (m) 

direction. 
See Footnote  b of Table 1. 

d See Footnote  c of Table 1. 
~ See Footnote  d of Table 1. 

of Ransil [16]. The same basis set has also been employed by Kolker and Karplus. 
The other columns of the O'Hare and Hurst results correspond to the calculations 
with extended basis sets. 

As one can see, there is a quite remarkable agreement between the present 
CNDO/2 results and those obtained in non-empirical calculations of Kolker and 
Karplus. Except for LiF the simplified CNDO variation-perturbation treatment 
leads to reasonable values of both components as well as the rotational average 
of the electric polarizability tensor. For LiF the non-empirical result appears to 
be anomalously high and also Kolker and Karplus considered this molecule as 
an exception. 

Some larger differences are observed for the parallel component of the electric 
polarizability of H2 and N2. In the case of the hydrogen molecule this too large 
value of ~lJ can partly be ascribed to the use of the zero differential approximation. 
It should be pointed out, that in the series of molecules studied in this paper, the 
overlap integral for ls orbitals in the hydrogen molecule has the largest numerical 
value. The source of the too large value of ~ll for N2 molecule seems, however, 
to be different. Perhaps, the Slater orbitals utilized in the CNDO/2 calculations 
are partly responsible for the observed discrepancy. 

It also follows from Tables 1 and 2, that the difference between the CNDO/2 
and non-empirical results becomes more pronounced when better molecular wave 
functions are used. Nevertheless, the rotational average ~Av calculated by using 
the CNDO/2 version of the variation-perturbation approach is still in reasonable 
agreement with non-empirical results. Thus, the present method seems to be quite 
useful for a simple evaluation of ~Av. It is also worth noting, that the CNDO/2 
version of the variation-perturbation method does not require approximations 
other than already involved in the CNDO/2 HFR SCF procedure [3, 4]. 

The results of various CNDO/2 calculations of ~A~ and the experimental data 
are compared in Table 4. Unfortunately, the experimental data are too scarce to 
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Table 4. Rotational avera9 e of the polarizability tensor - a comparison of various CNDO/2 results 
(all values in 10 -24 cm 3) 

Molecule CNDO/2 results Obs. [24] 
This work Davies [5] Hush and Williams 

I a I I  b I c [ 6 ]  l i  d [ 7 ]  

HH 0.936 0.07 1.33 0.152 0.820 0.819 
HLi 5.069 . . . . .  
HB 2.873 . . . . .  
HF 0.528 0.13 0.36 - -  1.019 - -  
NN 2.648 0.63 0.647 1.800 1.767 
FF 0.895 - -  - -  0.323 1.476 - -  
CO 2.283 - -  - -  0.829 1.982 1.977 
BF 2.552 - -  - -  1.987 3.140 - -  
LiF 3.966 - -  - -  0.833 1.986 - -  

Perturbed Hartree-Fock calculations without 2p hydrogen orbitals. 
b Perturbed Hartree-Fock calculations with 2p orbitals at hydrogen. 
c Results of the finite electric field perturbation method without empirical corrections. 
d Results of the finite electric field perturbation method with empirical corrections for atomic 

contributions. 

Table 5. Polarizability anizotropies A a = a l l -  ez  (all values in 10-24 cm a) 

Mole- CNDO/2 results Obs. [24] 

cule This Davies [5] Hurst and 
work I a IIb Williams [6] 

Non-empirical calculations 

HH 1.092 
HLi - 1.777 
HB -0.159 
HF 0.453 

NN 4.648 
FF 1.904 
CO 3.520 
BF 0.858 
LiF -0.558 

0.21 0.40 0.455 0.314 0.2671 [25] 
. . . . .  1.282 [15] , -1 .730115]  

0.29 0.41 0.327 - -  0.236 [26], 0.543 [15], 0.305 [15], 
0.210 [15] 

0.70 0.759 0.696 3.451 [15], 2.291 [15], 2.092 [15] 
- -  - -  0.919 - -  1.37 [27], 1.703 [15], 1.298 [15] 

0.361 0.532 3.090 [15], 0.993 [15], 1.135 [15] 
- -  - -  -1.317 - -  1.729 [15], -1.142 [15], -1.024 [15] 
- -  - -  0.500 - -  

a See Footnote a of Table 4. 
b See Footnote b of Table 4. 

a l l o w  for  a s o p h i s t i c a t e d  j u d g e m e n t .  N e v e r t h e l e s s ,  t h e  p r e s e n t  m e t h o d  seems  t o  b e  

e s sen t i a l l y  b e t t e r  t h a n  t h a t  p r o p o s e d  b y  D a v i e s  [5].  O u r  r e su l t s  s e e m  a lso  to  b e  

b e t t e r  t h a n  t h o s e  o b t a i n e d  b y  H u s h  a n d  W i l l i a m s  [6] in  t h e  f in i te  p e r t u r b a t i o n  

a p p r o a c h  w i t h o u t  e m p i r i c a l  c o r r e c t i o n s .  H o w e v e r ,  t h e  f in i te  p e r t u r b a t i o n  m e t h o d  

e x t e n d e d  b y  a n  e m p i r i c a l  c o r r e c t i o n  s c h e m e  [7] g ives  r e su l t s  w h i c h  a r e  m u c h  

c lose r  to  t h e  e x i s t i n g  e x p e r i m e n t a l  d a t a  t h a n  t h e  p r e s e n t  ones .  

T h e  c a l c u l a t e d  a n d  o b s e r v e d  p o l a r i z a b i l i t y  a n i s o t r o p i e s  a r e  s h o w n  in  T a b l e  5. 

B o t h ,  t h e  m e t h o d  o f  H u s h  a n d  W i l l i a m s  [6, 7] a n d  t h e  m e t h o d  of  D a v i e s  [5] l e a d  

to  b e t t e r  r e s u l t s  t h a n  t h e  C N D O / 2  v a r i a t i o n - p e r t u r b a t i o n  a p p r o a c h .  I t  seems ,  

t h a t  su f f i c ien t ly  a c c u r a t e  c o m p u t a t i o n  of  t h e  p o l a r i z a b i l i t y  a n i s o t r o p i e s  lies b e y o n d  

12" 
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the abilities of the CNDO/2 variation-perturbation approach in its present form. 
The same, however, applies also to the non-empirical calculations, especially to 
those based on the approximate variation-perturbation technique of Karplus 
and Kolker. 

According to results obtained in the present paper, the CNDO/2 version of 
the variation-perturbation approach can serve as a simple and useful tool for the 
calculation of rotational averages of the electric polarizability tensor. In com- 
parison with other semiempirical methods discussed in this paper, our CNDO/2 
variation-perturbation approach is much simpler from the computational point 
of view. It requires only a knowledge of the ground state wave function and the 
calculation of few simple integrals. Unfortunately, this attractive approach cannot 
allow for a reasonable evaluation of the polarizability anisotropies. This conclusion 
is quite opposite to that drawn out in connection with the CNDO/2 variation- 
perturbation calculations of the magnetic susceptibility tensor [9]. In this latter 
case, the rotational average as well as the individual components were predicted 
in good agreement with experimental data and non-empirical results. It should 
be pointed out, that the observed difference between the electric polarizability 
and magnetic susceptibility calculations within the CNDO/2 variation-perturba- 
tion approach resembles that found by Kolker and Karplus [11] in the case of 
the non-empirical treatment. Thus, the lack of a good agreement between the 
calculated and observed polarizability components can also be ascribed to the 
use of the variation-perturbation technique [28]. 

Finally, it is worth noting, that our results are frequently in remarkably good 
agreement with non-empirical variation-perturbation calculations which employ 
the minimal Slater orbital basis set. Hence, it follows that the CNDO/2 variation- 
perturbation method is able to simulate these non-empirical results. This observa- 
tion also partly justifies the use of the zero differential overlap approximation 
which works unexpectedly good. 
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